Lichnerowicz-Obata conjecture in dimension two

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projective Lichnerowicz-Obata Conjecture

We solve two classical conjectures by showing that if an action of a connected Lie group on a complete Riemannian manifold preserves the geodesics (considered as unparameterized curves), then the metric has constant positive sectional curvature, or the group acts by affine transformations.

متن کامل

Lichnerowicz and Obata Theorems for Foliations

The standard Lichnerowicz comparison theorem states that if the Ricci curvature of a closed, Riemannian n-manifold M satisfies Ric (X,X) ≥ a (n − 1) |X| for every X ∈ TM for some fixed a > 0, then the smallest positive eigenvalue λ of the Laplacian satisfies λ ≥ an. The Obata theorem states that equality occurs if and only if M is isometric to the standard n-sphere of constant sectional curvatu...

متن کامل

An Intrinsic Approach to Lichnerowicz Conjecture

In this paper we give a proof of Lichnerowicz Conjecture for compact simply connected manifolds which is intrinsic in the sense that it avoids the Nice Embeddings into eigen spaces of the Laplacian. Even if one wants to use these embeddings this paper gives a more streamlined proof.

متن کامل

The Divergence-free Jacobian Conjecture in Dimension Two

A special case, called the divergence-free case, of the Jacobian Conjecture in dimension two is proved. This note outlines an argument for a special case of the Jacobian conjecture in dimension two: Suppose F : C → C is a polynomial so that F (0) = 0, F ′(0) = I, det(F ′(z)) = 1, z ∈ C. (1) where I is the identity transformation on C. Write F (x, y) = ( r(x, y) + x s(x, y) + y ) , (x, y) ∈ C wh...

متن کامل

The cone conjecture for Calabi-Yau pairs in dimension two

A central idea of minimal model theory as formulated by Mori is to study algebraic varieties using convex geometry. The cone of curves of a projective variety is defined as the convex cone spanned by the numerical equivalence classes of algebraic curves; the dual cone is the cone of nef line bundles. For Fano varieties (varieties with ample anticanonical bundle), these cones are rational polyhe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Commentarii Mathematici Helvetici

سال: 2005

ISSN: 0010-2571

DOI: 10.4171/cmh/25